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Alzheimer’s disease (AD) is characterized by a sequence of pathological changes, which

are commonly assessed in vivo using various brain imaging modalities such as magnetic

resonance imaging (MRI) and positron emission tomography (PET). Currently, the most

approaches to analyze statistical associations between regions and imaging modalities

rely on Pearson correlation or linear regression models. However, these models are prone

to spurious correlations arising from uninformative shared variance and multicollinearity.

Notably, there are no appropriate multivariate statistical models available that can easily

integrate dozens of multicollinear variables derived from such data, being able to utilize

the additional information provided from the combination of data sources. Gaussian

graphical models (GGMs) can estimate the conditional dependency from given data,

which is conceptually expected to closely reflect the underlying causal relationships

between various variables. Hence, we applied GGMs to assess multimodal regional brain

alterations in AD. We obtained data from N = 972 subjects from the Alzheimer’s Disease

Neuroimaging Initiative. The mean amyloid load (AV45-PET), glucose metabolism (FDG-

PET), and gray matter volume (MRI) were calculated for each of the 108 cortical and

subcortical brain regions. GGMs were estimated using a Bayesian framework for the

combined multimodal data and the resulted conditional dependency networks were

compared to classical covariance networks based on Pearson correlation. Additionally,

graph-theoretical network statistics were calculated to determine network alterations

associated with disease status. The resulting conditional dependency matrices were

much sparser (≈ 10% density) than Pearson correlation matrices (≈ 50% density).

Within imaging modalities, conditional dependency networks yielded clusters connecting

anatomically adjacent regions. For the associations between different modalities, only

few region-specific connections were detected. Network measures such as small-

world coefficient were significantly altered across diagnostic groups, with a biphasic u-

shape trajectory, i.e., increased small-world coefficient in early mild cognitive impairment

(MCI), similar values in late MCI, and decreased values in AD dementia patients

compared to cognitively normal controls. In conclusion, GGMs removed commonly
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shared variance among multimodal measures of regional brain alterations in MCI and

AD, and yielded sparser matrices compared to correlation networks based on the

Pearson coefficient. Therefore, GGMs may be used as alternative to thresholding-

approaches typically applied to correlation networks to obtain the most informative

relations between variables.

Keywords: Alzheimer’s disease, mild cognitive impairment, conditional dependency networks, Gaussian graphical

models, graph-theoretical analysis, small-world network

1. INTRODUCTION

Alzheimer’s disease (AD) is characterized by a range of
pathological brain alterations that can be assessed in vivo using
various neuroimaging methods, including MRI and PET. Several
studies suggest that information obtained from combining
different imaging modalities could provide reliable markers of
cerebral reserve capacity and might be used to predict and
monitor the evolution of AD and its relative impact on cognitive
domains in pre-clinical, prodromal, and dementia stages of AD
[see e.g., reviews (Teipel S. et al., 2015; Teipel et al., 2016)].
However, there is still an unmet need for appropriate analysis
methods for assessing statistical associations between individual
brain regions and between different pathology markers derived
from multiple neuroimaging modalities.

Up to date, multimodal studies employ one of the
following approaches:

(i) Correlation of pathologymaps on a voxel level (La Joie et al.,
2012; Altmann et al., 2015; Grothe and Teipel, 2016);

(ii) linear regression analysis with a-priori specified regions-of-
interest (Buckner et al., 2005; Seeley et al., 2009; Villain et al.,
2010; Kljajevic et al., 2014; Chang et al., 2015; Grothe et al.,
2016; Teipel and Grothe, 2016);

(iii) stratification of subjects into distinct groups (e.g., amyloid
positive/negative) to compare differences in other imaging
modalities (Buckner et al., 2005; Kljajevic et al., 2014; Grothe
et al., 2016);

(iv) comparison of graph-theoretical measures and statistics
between modalities (Stam et al., 2006; Buckner et al., 2009;
Zhou et al., 2012; Sepulcre et al., 2013, 2017); and

(v) estimation of generative models for comparing spreading
mechanisms of amyloid-β deposition and its contribution
to neurodegeneration (Dyrba et al., 2017; Iturria-Medina
et al., 2017; Torok et al., 2018).

Commonly employed statistical models, such as linear regression
analysis, provide limited ability to assess the interactions between
dozens of variables in the same model, as they cannot derive
reliable estimates regarding the individual contribution of highly
collinear predictors and suffer from variance inflation (Dormann
et al., 2013). Calculation of covariance/connectivity matrices
based on the Pearson correlation between each pair of variables
has led to practical problems in deriving meaningful results, i.e.,
these matrices are commonly thresholded to an a-priori defined
density and binarized (Buckner et al., 2009; Zhou et al., 2012;
Sepulcre et al., 2013). More recently, summary statistics based

on graph-theory have been proposed (Watts and Strogatz, 1998;
Stam et al., 2006) and are currently widely applied (Buckner et al.,
2009; Zhou et al., 2012; Sepulcre et al., 2013, 2017). However, this
approach has been criticized, as for instance, group differences in
small-worldness of the brain network might be sensitive to the
specific density threshold (Hlinka et al., 2017; Mårtensson et al.,
2018).

We suggest the application of Gaussian graphical models
(GGMs), which are able to estimate the partial correlation
between various multicollinear predictors (Hastie et al., 2013,
chapter 7.3). GGMs yield sparse conditional dependency
matrices, that are conceptually expected to closer reflect the
underlying causal relationships (Koller and Friedman, 2009,
chapter 21.7; Bontempi and Flauder, 2015). This makes GGMs
an interesting candidate for studying properties of the brain
network; an example is illustrated in Figure 1. The partial
correlation derived from GGMs is conceptually similar to the
partial correlation obtained from a series of linear regression
models, which estimate the statistical association of the
dependent and independent variables while controlling for the
confounding variables. Additionally, GGMs extend this concept
by estimating the partial correlation matrix as a set of coupled
regression problems, in contrast to separate regression problems
modeled by traditional linear regression (Meinshausen and
Bühlmann, 2006; Hastie et al., 2013, chapter 7.3). Technically,
GGMs are naively realized by matrix inversion of the covariance
matrix. In more robust and efficient approaches, regularization
techniques (Meinshausen and Bühlmann, 2006; Ravikumar et al.,
2011; Ryali et al., 2012; Cai et al., 2013; Wang et al., 2016) or
efficient sampling schemes (Mohammadi and Wit, 2015, 2019)
are applied.

In this paper, we tested the applicability and clinical utility of
GGMs to reveal the conditional dependency structure between
regional pathology measures. For this purpose, we assessed inter-
regional statistical associations within and between three main
imaging markers of Alzheimer’s disease using GGMs based on
a whole-cortex parcellation of the brain. The assessed imaging
markers included amyloid-β deposition (florbetapir/AV45-PET),
glucose metabolism (FDG-PET), and gray matter volume (T1-
weighted MRI). Based on our previous results with only six
representative brain regions (Dyrba et al., 2017), we hypothesized
that regional amyloid deposition has low contribution to gray
matter atrophy, whereas hypometabolism was expected to be
stronger related to atrophy. Further, we expected a few hub-nodes
influencing pathology in other regions. For graph-theoretical
measures, we expected a linear trajectory of decreasing clustering
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FIGURE 1 | Simple example for spurious correlations. (A) True dependency graph. The node u is statistically independent from v given the node dis, formally

p(u, v|dis) = p(u|dis)p(v|dis). (B) Pearson correlation matrix, showing a “spurious” correlation between nodes u and v. Notably, when considering only u and v alone,

the independence assumption does not hold; formally p(u, v) 6= p(u)p(v). (C) Partial correlation matrix derived from Gaussian graphical models. Using this model, we

can approximately recover the underlying dependency structure, with u ⊥ v|dis H⇒ cor(u, v|dis) = 0.

coefficient and increasing path length with stronger disease
severity, as previously reported in the literature for connectivity
analyses based on Pearson correlation (He et al., 2008; Yao et al.,
2010; Li et al., 2012; Morbelli et al., 2012; Tijms et al., 2013;
Pereira et al., 2016; John et al., 2017; Titov et al., 2017).

2. MATERIALS AND METHODS

2.1. Study Participants
Data were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (http://adni.loni.usc.edu). The ADNI
was launched in 2003 by the National Institute on Aging, the
National Institute of Biomedical Imaging and Bioengineering,
the Food and Drug Administration, private pharmaceutical
companies, and non-profit organizations, with the primary goal
of testing whether neuroimaging, neuropsychological, and other
biological measurements can be used as reliable in vivo markers
of Alzheimer’s disease pathogenesis. A complete description of
ADNI and up-to-date information is available at http://www.
adni-info.org. For this study, 529 subjects with amnestic mild
cognitive impairment (MCI), 189 patients with Alzheimer’s
dementia (AD), and 254 cognitively healthy control subjects
(CN) were selected from the ADNI-GO, ADNI-2, and ADNI-
3 extensions of the ADNI project, based on the availability of
concurrent structural MRI, FDG-PET, amyloid-sensitive AV45-
PET, and neuropsychological assessments. In ADNI, two MCI
subgroups exist, which only differ by the less severe impairment
of memory function for early MCI (EMCI) compared to late MCI
(LMCI) subjects. Detailed inclusion criteria for the diagnostic
categories can be found at the ADNI website (http://adni.loni.
usc.edu/methods, ADNI2 manual page 27). Demographics and
neuropsychological profiles of the different diagnostic groups are
summarized in Table 1.

2.2. Imaging Data and Feature Extraction
ADNI-GO/2 MRI, FDG- and AV45-PET data were downloaded
from the ADNI image archive. ADNI-GO/2 MRI data were
acquired on multiple 3T MRI scanners using scanner-specific
T1-weighted sagittal 3D MP-RAGE/IR-SPGR sequences. To
increase signal uniformity across the multicenter scanner
platforms, original T1 acquisitions underwent standardized
image preprocessing correction steps (http://adni.loni.usc.edu/

TABLE 1 | Sample characteristics.

CN EMCI LMCI AD

Sample size (female) 254(130) 309(135) 220(93) 189(80)

Age (SD) 75.4± 6.6 71.6± 7.5* 74.1± 8.1 75.0± 8.0

Education (SD) 16.4± 2.7 16.0± 2.6 16.2± 2.8 15.9± 2.7

MMSE (SD) 29.1± 1.2 28.3± 1.6* 27.6± 1.9* 22.6± 3.2*

Delayed recall (SD) 7.6± 4.1 5.7± 4.0* 3.2± 3.7* 0.8± 1.9*

Gender distribution did not differ significantly between groups (P = 0.15, chi-square test).

Asterisks indicate significant difference between groups (P < 0.05) based on pairwise

two-sample t-test with CN as reference group. CN, cognitively healthy elderly controls;

EMCI/LMCI, early and late amnestic mild cognitive impairment; AD, Alzheimer’s dementia;

MMSE, Mini-Mental State Examination; delayed recall, number of remembered words out

of a 15-item wordlist of the Rey Auditory Verbal Learning Test.

methods/mri-tool/mri-pre-processing/). FDG- and AV45-PET
data were acquired on multiple instruments of varying
resolution and following different platform-specific acquisition
protocols. Similar to the MRI data, PET data in ADNI were
also subject to standardized image preprocessing correction
steps, with the aim of increasing data uniformity across the
multicenter acquisitions (http://adni.loni.usc.edu/methods/pet-
analysis-method/pet-analysis/). Imaging data were processed by
using statistical parametric mapping (SPM8, Wellcome Centre
for Human Neuroimaging, University College London) and the
VBM8 toolbox (Structural Brain Mapping Group, University of
Jena) implemented in MATLAB R2013b (Math-Works, Natick,
MA) as previously described in Grothe et al. (2016) and Grothe
and Teipel (2016). First, MRI T1 scans were segmented into
gray matter, white matter, and cerebrospinal fluid partitions
using the segmentation routine of the VBM8 toolbox. Then, the
resulting gray matter and white matter segments were spatially
normalized to an aging/AD-specific reference template (Grothe
et al., 2013) using the DARTEL algorithm. Additionally, voxel
values of the normalized gray matter segments were modulated
for volumetric changes introduced by the high-dimensional
normalization, such that the total amount of gray matter volume
present before warping was preserved. Each subject’s FDG- and
AV45-PET scans were rigidly coregistered to the corresponding
skull-stripped T1 scan. Then, the PET scans were corrected
for partial volume effects using a three-compartment model
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and the MRI-derived tissue segments (Müller-Gärtner et al.,
1992; Gonzalez-Escamilla et al., 2017). Corrected PET scans
were spatially normalized (without modulation) by applying the
deformation fields of the T1-weighted scans. All original data
and normalized scans were visually inspected to ensure a high
quality of the data. Subsequently, mean gray matter volumes
and mean FDG-/AV45-PET uptake values were calculated for
108 cortical and subcortical regions defined by the Harvard-
Oxford atlas (Desikan et al., 2006) after projecting the atlas to
the aging/AD-specific reference space and removing voxels with
a gray matter probability of <50% in the aging/AD template.
Finally, regional gray matter volumes were proportionally scaled
by total intracranial volume (TIV), regional FDG-PET values
were proportionally scaled to pons uptake, and regional AV45-
PET values were proportionally scaled to whole-cerebellum
uptake. To be able to directly compare the different modalities,
all regional values were normalized using the congitively normal
subjects as reference group (La Joie et al., 2012). As described
previously (Dyrba et al., 2017), we used the so-called W-
scores, which are analogous to Z-scores but are adjusted for
specific covariates; age, gender, and education in the present
case. Like Z-scores, W-scores have a mean value of 0 and a
standard deviation of 1 in the control group, and values of
+1.65 and −1.65 correspond to the 95th and 5th percentiles,
respectively. To calculate the W-scores, regression models were
estimated for the control group using age, gender, and education
as independent variables and the mean value of each region
as dependent variable. Then, W-scores were computed using
W = (xij − eij)/sres,j; with xij being the ith subject’s raw value
for region j; eij being the value expected for region j in the
control group for the ith subject’s age, gender, and education;
and sres,j being the standard deviation of the residuals for region
j in controls.

2.3. Statistical Modeling
Graphical models provide an effective way for describing
statistical patterns in multivariate data and for estimating the
conditional dependency between the various brain regions
and imaging modalities based on GGMs (Lauritzen, 1996;
Mohammadi and Wit, 2015). For data following a multivariate
normal distribution, undirected GGMs are commonly used.
In these graphical models, the graph structure is directly
characterized by the precision matrix, i.e., the inverse of the
covariance matrix: non-zero entries in the precision matrix show
the edges in the conditional dependency graph. Notably, simple
inversion of the covariance matrix usually does not work in real
world data sets, as already slight noise in the empirical data
causes the precision matrix to contain almost no zero entries.
To overcome this problem, regularization techniques or efficient
sampling algorithms have been proposed that reduce the effect
of noise by additionally employing a sparsity assumption and,
thus, only detect the most probable conditional dependencies.
For our analyses, we employed a computationally efficient
Bayesian framework implemented in the R package BDgraph.
More specifically, this framework implements a continuous-time
birth-death Markov process for estimating the most probable
graph structure and edge weights that correspond to the
observed partial correlations (Mohammadi andWit, 2015, 2019).
For this study, BDgraph was substantially extended by multi-
threaded parallel processing and marginal pseudo-likelihood
approximation to speed up computations.

2.4. Experimental Setup
First, we estimated GGMs based on the combined data of EMCI,
LMCI, and AD patients to study the conditional dependency
between brain regions and modalities. Second, we estimated
GGMs for each diagnostic group separately to assess alterations

FIGURE 2 | Pearson correlation matrix (left) and partial correlation matrix (right) for the three imaging modalities (left hemisphere data only) estimated for the

combined data of EMCI, LMCI, and AD patients. For better readability, each individual block of the partial correlation matrix is shown in Figures 3–5 and

Figures S2–S4. EMCI/LMCI, early and late amnestic mild cognitive impairment; AD, Alzheimer’s dementia.
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FIGURE 3 | Partial correlation matrix for amyloid-β deposition in the left hemisphere estimated for the combined data of EMCI, LMCI, and AD patients. Averaged over

10 repetitions. Associations of lowest magnitude were not present in all iterations. EMCI/LMCI, early and late amnestic mild cognitive impairment; AD, Alzheimer’s

dementia; amy, amyloid-β.

of the graph structures. For the combined model, regional W-
scores of all MCI and AD patients (N = 718) and all three
imagingmodalities were entered. Initially, we took all 108 cortical
and subcortical regions included in the Harvard-Oxford atlas
(Desikan et al., 2006) into consideration, corresponding to P =

3 ∗ 108 = 324 variables. The sampling process included
1,000,000 burn-in iterations1, starting from a random estimate
for the inverse covariance matrix and converging to estimates
with higher posterior probability giving the training data. The
burn-in iterations were then discarded, and subsequently 150,000
sampling iterations followed to obtain the estimates for the
inverse covariance matrix. Because results were showing a strong
left–right hemisphere symmetry, we repeated model estimation
including only the 54 regions in the left hemisphere (P =

1For Markov chain Monte Carlo (MCMC) methods, burn-in refers to the practice

of discarding an initial portion of the Markov chain sample, so that the chain can

reach a stationary distribution. Thus, the effect of randomly chosen initial values

on the posterior inference is minimized.

3 ∗ 54 = 162 variables) to increase model stability. From the
final model we set a probability threshold of Pavg > 0.5 for
selecting the edges, with the notion that a specific edge was
considered to be present if it existed in at least half of all model
iterations (Madigan et al., 1996). For the second analysis of group
differences, we estimated individual GGMs for each group based
on the multimodal data of the left hemisphere. Sampling was
again performed with 1,000,000 burn-in iterations followed by
150,000 sampling iterations.

For comparison, these analyses were also repeated (i) using
data of the right hemisphere to validate the results and (ii) using
the traditional approach of constructing correlation networks
based on the Pearson correlation coefficient.

2.5. Graph-Theoretical Analyses
To assess group differences of the estimated graph structure
we calculated the three graph-theoretical measures that are
most commonly reported in the literature; clustering coefficient,
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characteristic path length, and their ratio, the small-world
coefficient. The path length quantifies the distance of connections
between two nodes along the shortest path. The weighted
characteristic path length is the average minimum distance
between a node i ∈ N and all other nodes, Li =

∑
j∈N,j 6=i dij/(n−

1), where dij =
∑

auv∈gi↔j
ωuv is the shortest weighted path length

between i and j, gi↔j defines the shortest path, and ωuv defines
the distance between two nodes. Here, the distance matrix was
defined as � = 1 − abs(2), that is one minus the absolute
pair-wise partial correlation as derived from the GGMs or the
absolute Pearson coefficient, respectively (Rubinov and Sporns,
2010). The weighted clustering coefficient indicates the inter-
connectedness of neighboring nodes Ci = 2ti/(ki(ki − 1)), where
ti = 0.5

∑
j,h∈N(ωijωihωjh)

1/3 is the geometric mean of triangles

around node i, and where ki =
∑

j∈N aij is the number of nodes

connected to node i (Onnela et al., 2005; Rubinov and Sporns,
2010). ki is often referred to as the degree of the node i, and the
link status aij = 1 if node i is connected to another node j, or
aij = 0 otherwise. The small-world coefficient is defined as the

ratio of the clustering coefficient C and characteristic path length
L in comparison to a random network, S = (C/Crand)/(L/Lrand),
with S≫ 1 in small-world networks (Rubinov and Sporns, 2010).
To simplify calculations, we omitted defining a random network
to estimate Crand and Lrand, and directly took the ratio Si = Ci/Li
for group comparisons. Notably, we later report the distribution
of graphmeasures for single regions, as the dependencymeasures
were derive from the whole group of subjects. Graphmetrics were
compared between diagnostic groups using analysis of variance
(ANOVA) and Tukey’s honest significant difference tests.

3. RESULTS

3.1. Conditional Dependency of
Alzheimer’s Pathology
The conditional dependency matrix obtained using the GGM
approach for all region of the left hemisphere is given in Figure 2

(right). For the partial correlation between all pairs of brain
regions, we obtained 960 significant associations (7% network

FIGURE 4 | Partial correlation matrix for glucose metabolism in the left hemisphere estimated for the combined data of EMCI, LMCI, and AD patients. Averaged over

10 repetitions. Associations of lowest magnitude were not present in all iterations. EMCI/LMCI, early and late amnestic mild cognitive impairment; AD, Alzheimer’s

dementia; metab, glucose metabolism.
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FIGURE 5 | Partial correlation matrix for gray matter volume in the left hemisphere estimated for the combined data of EMCI, LMCI, and AD patients. Averaged over

10 repetitions. Associations of lowest magnitude were not present in all iterations. EMCI/LMCI, early and late amnestic mild cognitive impairment; AD, Alzheimer’s

dementia; vol, gray matter volume.

density) surviving the posterior probability threshold of P > 0.5
(see Figure S1 showing the probability of links). For comparison,
the Pearson correlation matrix is given in Figure 2 (left). We
obtained approximately 6,000 significant Pearson correlations
(P < 0.05, Bonferroni corrected), corresponding to a network
density of 46% of the total number of possible edges.

For intra-modal associations, i.e., within the same imaging
modality, brain regions directly adjacent to each other formed
smaller clusters of high partial correlation around the main
diagonal (Figures 3–5). When considering inter-modal
associations, i.e., between different imaging modalities, we
obtained a consistent pattern of significant positive intra-regional
conditional dependency for the pairs amyloid-β deposition and
metabolism with a mean partial correlation of ρ = 0.21 for 43
significant associations. These are visible as the higher intensities
in the diagonal of Figure S2. Between amyloid-β and gray
matter volume as well as between metabolism and gray matter
volume, only few significant intra-regional associations were
found (Figures S3, S4).

3.2. Group Comparison of the Graph
Structures
When estimating separate models for each diagnostic group
based on the multimodal data, graph structures derived from
Pearson and partial correlation matrices (Figures 6–8) both
differed in their density, leading to significant alterations of
the clustering coefficient, characteristic path length, and small-
world coefficient (Figure 9 and Figure S9). Detailed graph
statistics stratified by individual regions and diagnostic groups
are provided in Figures S5–S7.

We observed a biphasic trajectory of the graph measures.
This means that the clustering coefficient and small world
coefficient initially increases when comparing early MCI and CN
participants (Figure 9). When Alzheimer’s disease progresses,
i.e., in the lateMCI and dementia groups, bothmeasures decrease
again, with lateMCI being approximately on the same level as CN
participants (Figure 9). The characteristic path length showed a
similar pattern across groups, but with inverted directionality. All
blocks showed significant differences in mean between groups,
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FIGURE 6 | Partial correlation matrix for amyloid-β in the left hemisphere by group. Averaged over 10 repetitions. Associations of lowest magnitude were not present

in all iterations. CN, cognitively healthy elderly controls; EMCI/LMCI, early and late amnestic mild cognitive impairment; AD, Alzheimer’s dementia; amy, amyloid-β.

one-way analysis of variance (ANOVA), df = 215, F ≥

4, p < 0.01, η2 ≥ 0.055. Detailed results are provided
in Table S2. P-values for Tukey’s honest significant difference
tests are provided in Table 2 and Table S1. Graph statistics
obtained from the right hemisphere data (Figure S8) were largely
consistent with strongest agreement for the characteristic path
length metric.

4. DISCUSSION

4.1. Conditional Dependency Between
Brain Regions
The GGMs estimated the strongest conditional dependencies
mainly within imaging modalities. We expected adjacent brain

regions to form clusters with high inter-cluster similarity for
amyloid-β deposition (Figure 3), as it is known to have low
variability in spatial distribution and, therefore, is often used as
a dichotomic variable after applying a certain threshold to the
global amyloid tracer uptake (Chételat et al., 2013; Landau et al.,
2013; Grothe et al., 2017) or as four-stage variable derived from
a linear spreading pattern (Grothe et al., 2017; Sakr et al., 2019).
We also found such clustering patterns formetabolism (Figure 4)
and gray matter volume (Figure 5), matching previous studies
on metabolism and gray matter covariance networks based on
Pearson correlation (Yao et al., 2010; Carbonell et al., 2016;
Pereira et al., 2016) or principal component analysis (Di and
Biswal, 2012; Spetsieris et al., 2015; Savio et al., 2017). Clusters of
high covariance have been found in the lateral andmedial parietal
lobe, lateral frontal lobe, and lateral and medial temporal lobe,
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FIGURE 7 | Partial correlation matrix for glucose metabolism in the left hemisphere by group. Averaged over 10 repetitions. Associations of lowest magnitude were

not present in all iterations. CN, cognitively healthy elderly controls; EMCI/LMCI, early and late amnestic mild cognitive impairment; AD, Alzheimer’s dementia; metab,

glucose metabolism.

and had been associated with simultaneous growth during brain
development, functional co-activation, and axonal connectivity
in the literature (Gong et al., 2012; Alexander-Bloch et al., 2013).

Our analyses yielded only few and relatively weak associations
between different modalities (Figures S2–S4), except for the
direct intra-regional dependency between amyloid-β and
metabolism as well as between amyloid and gray matter volume
(diagonal of Figures S2, S4), which matched our previous
analysis with six selected regions of interest (Dyrba et al., 2017).
The positive dependency between amyloid-β and metabolism
was strongest in the early MCI group and matches previous
results for partial correlation obtained from linear regression
models (Altmann et al., 2015). This previous study reported a

markedly reduced number and strength of negative associations
between regional amyloid-β andmetabolism when correcting for
global amyloid load. They concluded that the negative association
between amyloid deposition and metabolism is more related
to the global amyloid level than to the distinct regional level.
The pattern of intra-regional dependency between amyloid-β
and metabolism as well as between amyloid-β and gray matter
volume was strongest in the early MCI group, which could refer
to the early phase of the disease and, therefore, a high variation in
regional amyloid-β deposition and a strong contribution of the
amyloid level on both metabolism and volume (Drzezga et al.,
2011; Carbonell et al., 2016). Notably, conditional dependencies
between metabolism and volume were obtained only for few
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FIGURE 8 | Partial correlation matrix for gray matter volume in the left hemisphere by group. Averaged over 10 repetitions. Associations of lowest magnitude were not

present in all iterations. CN, cognitively healthy elderly controls; EMCI/LMCI, early and late amnestic mild cognitive impairment; AD, Alzheimer’s dementia; vol, gray

matter volume.

regions including hippocampus and putamen, but not for
other expected regions such as posterior cingulate cortex
(Teipel and Grothe, 2016) (Figure S3).

4.2. Alterations of Graph Measures
Various studies reported a network disruption of AD in
comparison to cognitively healthy controls for gray matter
volume (He et al., 2008; Yao et al., 2010; Li et al., 2012;
Tijms et al., 2013; John et al., 2017) and glucose metabolism
(Morbelli et al., 2012; Titov et al., 2017), and intermediate
levels for volume in MCI (Yao et al., 2010; Pereira et al.,
2016); which we could replicate in our sample (Figure S9).
However, it has to be noted that for Pearson correlation matrices

usually high thresholds are applied to obtain sparser graphs.
Chung et al. (2016) and Voevodskaya et al. (2017) reported a
high influence of the selected graph density threshold on the
graph measures, leading to divergent increases and decreases
of the global clustering coefficient metric. To circumvent such
problems, we used weighted versions of the graph measures
(Rubinov and Sporns, 2010) and proposed GGMs to obtain
sparse conditional dependency matrices. Our results suggest
that graph statistics for regional dependency networks follow
a biphasic trajectory in the course of AD, a pattern that was
recently also reported for cortical thinning and mean diffusivity
(Montal et al., 2018) and resting-state fMRI connectivity
(Schultz et al., 2017).
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FIGURE 9 | Comparison of graph statistics for the partial correlation matrices of the left hemisphere stratified by diagnostic group and image modality. Estimates

based on Gaussian graphical models using multimodal neuroimaging data. The distribution of the weighted clustering coefficient, characteristic weighted path length,

and small-world coefficient for individual brain regions is shown. Boxes display median, first and third quartile of the distributions, and whiskers indicate

±1.5×interquartile range. All blocks showed significant differences in mean between groups, one-way analysis of variance (ANOVA), df = 215, F > 4, p < 0.01.

P-values for Tukey’s honest significant difference tests are given in Table 2. CN, cognitively healthy elderly controls; EMCI/LMCI, early and late amnestic mild cognitive

impairment; AD, Alzheimer’s dementia; amy, amyloid-β; metab, glucose metabolism; vol, gray matter volume.

In the current study, the EMCI group displayed the strongest
alterations of network structure with an increase of the
clustering coefficient, which may relate to the process of amyloid

accumulation taking place in several regions simultaneously in
this group increasing the intra-cluster correlation. For amyloid-
β and volume, LMCI subjects showed a clustering coefficient
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TABLE 2 | P-values for the group comparison of partial correlation graph statistics (Figure 9).

Amyloid-β Metabolism Volume

EMCI LMCI AD EMCI LMCI AD EMCI LMCI AD

Clustering coefficient CN 0.167 0.999 0.178 0.323 0.021 0.718 0.009 0.977 0.999

EMCI 0.183 < 0.001 0.630 0.031 0.030 0.012

LMCI 0.162 < 0.001 0.990

Path length CN 0.264 < 0.001 0.630 0.015 0.001 0.357 0.106 0.664 0.005

EMCI 0.189 0.922 0.884 < 0.001 0.667 < 0.001

LMCI 0.044 < 0.001 < 0.001

Small-world coefficient CN 0.101 0.940 0.301 0.184 0.002 0.701 0.011 0.967 0.987

EMCI 0.313 < 0.001 0.411 0.011 0.042 0.029

LMCI 0.096 < 0.001 0.999

Adjusted P-values from Tukey’s honest significant difference tests, controlling for family-wise error rate within each comparison block. CN, cognitively healthy elderly controls; EMCI/LMCI,

early and late amnestic mild cognitive impairment; AD, Alzheimer’s dementia.

and small-world coefficient comparable to controls, in contrast
to metabolism, where this group showed strongest deviation
from the other groups (Table 2). The lowest alterations of graph
measures were obtained for the gray matter network.

GGMs were recently applied as clustering algorithm for
brain networks in a few other single-modality applications.
de Vos et al. (2017) found them useful for increasing
group separation between AD and controls compared to
classical Pearson correlation networks in resting-state functional
connectivity. Titov et al. (2017) compared metabolic networks
for the differential diagnosis between AD and frontotemporal
lobar degeneration (FTLD). They also proposed an algorithm
to estimate if an individual subject shows a more AD or
FTLD pattern of regional metabolism. Munilla et al. (2017)
systematically evaluated the influence of the number of subjects
and the regularization strength on the GGM stability and
graph structure. They found that the estimated GGM graph
structure and small-world coefficient converged to a stable level
when including 40 or more subjects in their study sample. For
regularization-based approximation of GGMs, they showed that
the probability of an edge to exist in the estimated graph structure
almost linearly corresponds to the magnitude of their partial
correlation. Thus, this finding confirms our initial decision, that
sampling-based Bayesian estimation of the graph structure might
be more useful for detecting even low associations.

4.3. Limitations
It has to be noted that our methodological framework can
currently only be applied as a group statistic but not for
individual subjects. Therefore, GGMs can be used for exploratory
analyses as alternative to Pearson correlation networks, and may
aid generating new hypotheses about the interrelation of clinical
variables or feature selection. Then, derived hypotheses can be
validated using classical statistical methods such as regression or
mediation analysis.

Another limitation is the high uncertainty in the statistical
model to estimate the partial correlations. This is due to the
theoretically hard problem of matrix inversion on the one
hand, and due to the high number of possible graph edges in

comparison to the sample size on the other hand. Thus, the
model might be fragile with respect to the obtained values and
requires large training samples to get stable results. Here, we
repeated the model estimation on the whole data for ten times to
observe the effect on model stability, which was yielding largely
consistent results for strong links with high partial correlation,
but getting more variable for weaker links with low partial
correlation. Replicating the results using the right hemisphere
data also yielded largely consistent results with highest agreement
for the characteristic path length metric. Apparent deviation in
clustering coefficient and consequently in small-world coefficient
(= ratio of both) might be explained by the asymmetry of the
brain and the lateralization reported for Alzheimer’s disease in
the literature (e.g., stronger left hippocampus atrophy in ADNI)
(Grothe and Teipel, 2016; Wei, 2018). However, our findings still
need to be replicated in independent cohorts.

We observed a saturation of the conditional dependency
network when adding many variables. This means, the model
parameters might strongly change when having only few
variables in the model and adding another variable; in contrast
to very stable estimates of larger models with dozens of variables,
which are hardly altered when adding another variable. Actually,
this problem is well-known for linear regression models and
related to multicollinearity in the data (O’brien, 2007; Dormann
et al., 2013; Teipel S. J. et al., 2015). Recent developments in
stochastic block models may help to overcome these limitations,
as they try to infer the underlying clustering block structure and
separately estimate statistical associations within and between
clusters (Sun et al., 2014; Hosseini and Lee, 2016).

4.4. Conclusion
We applied GGMs to assess inter-modal and inter-regional
dependencies of high-dimensional multimodal neuroimaging
data of AD-related brain alterations. Our results showed that
conditional dependency networks estimated by GGMs provide
useful information within imaging modalities and could be
used as alternative to Pearson-correlation networks. Nonetheless,
GGMs did not detect some expected associations between
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modalities and, therefore, may have limited applicability for
large-scale data with dozens of variables.
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